RNAi-mediated gene silencing in non-human primates
RNAi-mediated gene silencing in non-human primates
Engineering Village 2
2006 Elsevier Inc.
Accession number: 063110042585
Title: RNAi-mediated gene silencing in non-human primates
Authors: Zimmermann, Tracy S.; Lee, Amy C. H.; Akinc, Akin; Bramlage, Birgit; Bumcrot, David; Fedoruk, Matthew N.; Harborth, Jens; Heyes, James A.; Jeffs, Lloyd B.; John, Matthias; Judge, Adam D.; Lam, Kieu; McClintock, Kevin; Nechev, Lubomir V.; Palmer, Lorne R.; Racie, Timothy; Rohl, Ingo; Seiffert, Stephan; Shanmugam, Sumi; Sood, Vandana; Soutschek, Jurgen; Toudjarska, Ivanka; Wheat, Amanda J.; Yaworski, Ed; Zedalis, William; Koteliansky, Victor; Manoharan, Muthiah; Vornlocher, Hans-Peter; MacLachlan, Ian
Author affiliation: Alnylam Pharmaceuticals Inc., Cambridge, MA 02142, United States
Serial title: Nature
Abbreviated serial title: Nature
Volume: v 441
Issue: n 7089
Issue date: May 4 2006
Publication year: 2006
Pages: p 111-114
Language: English
ISSN: 0028-0836
CODEN: NATUAS
Document type: Journal article (JA)
Publisher: Nature Publishing Group, Basingstoke, Hampshire, RG21 6XS, United Kingdom
Abstract: The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg-1. A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs. ? 2006 Nature Publishing Group.
Number of references: 19
Ei main heading: Genetic engineering
Ei controlled terms: RNA - Diseases - Medicine - Proteins - Nucleic acids - Lipids - Drug dosage - Biological organs - Cholesterol
Uncontrolled terms: Stable nucleic acid lipid particles (SNALP) - Lipoproteins - RNA interferences (RNAi) - Gene silencing
Ei classification codes: 461.8.1 Genetic Engineering - 461.2 Biological Materials - 461.6 Medicine - 804.1 Organic Compounds - 801.2 Biochemistry
Treatment: Theoretical (THR); Experimental (EXP)
DOI: 10.1038/nature04688
Database: Compendex
Compilation and indexing terms, ? 2006 Elsevier Inc. All rights reserved
Subscription required: http://www.engineeringvillage2.org
Votes:16