Amphiphilic oligomers

Amphiphilic oligomers

Agent: Moore & Van Allen PLLC - Research Triangle Park, NC, US
Inventor: Nnochiri N. Ekwuribe
Class: 514002000 (USPTO), A61K038/17 (Intl Class)
#20050181976
08/18/05
A therapeutic formulation comprising a microemulsion of a therapeutic agent in free and/or conjugatively coupled form, wherein the microemulsion comprises a water-in-oil (w/o) microemulsion including a lipophilic phase and a hydrophilic phase, and has a hydrophilic and lipophilic balance (HLB) value between 3 and 7, wherein the therapeutic agent may for example be selected from the group consisting of insulin, calcitonin, ACTH, glucagon, somatostatin, somatotropin, somatomedin, parathyroid honnone, erythropoietin, hypothalamic releasing factors, prolactin, thyroid stimulating hormones, endorphins, enkephalins, vasopressin, non-naturally occurring opioids, superoxide dismutase, interferon, asparaginase, arginase, arginine deaminease, adenosine deaminase, ribonuclease, trypsin, chymotrypsin, papain, Ara-A (Arabinofuranosyladenine), Acylguanosine, Nordeoxyguanosine, Azidothym id ine, Didesoxyadenosine, Dideoxycytidine, Dideoxyinosine Floxuridine, 6-Mercaptopurine, Doxorubicin, Daunorubicin, or I-darubicin, Erythromycin, Vancomycin, oleandomycin, Ampicillin; Quinidine and Heparin. In a particular aspect, the invention comprises an insulin composition suitable for parenteral as well as non-parenteral administration, preferably oral or parenteral administration, comprising insulin covalently coupled with a polymer including (i) a linear polyalkylene glycol moiety and (ii) a lipophilic moiety, wherein the insulin, the linear polyalkylene glycol moiety and the lipophilic moiety are conformationally arranged in relation to one another such that the insulin in the composition has an enhanced in vivo resistance to enzymatic degradation, relative to insulin alone. The microemulsion compositions of the invention are usefully employed in therapeutic as well as non-therapeutic, e.g., diagnostic, applications.
ACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention
[0002] The present invention relates to microemulsion formulations of free-form and/or conjugation-stabilized therapeutic agents, and to methods of making and using same. The compositions of the invention may comprise therapeutic agents such as proteins, peptides, nucleosides, nucleotides, antiviral agents, antineoplastic agents, antibiotics, antiarrhythmics, anti-coagulants, etc., and prodrugs, precursors, derivatives, and intermediates thereof.
SUMMARY OF THE INVENTION
[0047] The present invention relates to microemulsion formulations of free-form and/or conjugation-stabilized therapeutic agents, and to methods of making and using same. The compositions of the invention may comprise therapeutic agents such as proteins, peptides, nucleosides, nucleotides, antiviral agents, antineoplastic agents, antibiotics, antiarrhythmnics, anti-coagulants, etc., and prodrugs, precursors, derivatives, and intermediates thereof.
[0048] The formulations of the present invention may utilize conjugation-stabilized therapeutic and/or diagnostic agent compositions, which are conjugatively stabilized as more fully described in U.S. Pat. No. 5,681,811 issued Oct. 28, 1997, U.S. Pat. No. 5,438,040 issued Aug. 1, 1995 and U.S. Pat. No. 5,259,030 issued Oct. 25, 1994, all in the name of Nnochiri Nkem Ekwuribe, the disclosures of which are hereby incorporated herein in their entirety.
[0049] More particularly, the formulations of the present invention may utilize covalently conjugated therapeutic and/or diagnostic complexes wherein the therapeutic and/or diagnostic agent peptide is covalently bonded to one or more molecules of a polymer incorporating as an integral part thereof a hydrophilic moiety, e.g., a linear polyalkylene glycol, and wherein said polymer incorporates a lipophilic moiety as an integral part thereof.
[0050] In one particular aspect, the present invention relates to a formulation including a physiologically active therapeutic agent covalently coupled with a polymer comprising (i) a linear polyalkylene glycol moiety and (ii) a lipophilic moiety, wherein the therapeutic agent, linear polyalkylene glycol moiety, and the lipophilic moiety are conformationally arranged in relation to one another such that the physiologically active therapeutic agent in the formulation has an enhanced in vivo resistance to enzymatic degradation, relative to the physiologically active therapeutic agent alone (i.e., in an unconjugated form devoid of the polymer coupled thereto).
Complete article is available online.
Comments: 0
Votes:13